Abstract
The yield response of long-term pastures growing on acidified soil to applications of limestone (0, 2.5, 5.0, 7.5 and 10.0 t/ha with adequate magnesium fertiliser, and 0 and 5 t/ha with no magnesium fertiliser) was measured in 5 field experiments on different representative soils of the high rainfall areas of south-western Australia. After application, limestone was incorporated 1 cm deep in 3 experiments, 3 cm deep in 1 experiment, and 7 cm in another experiment. The pastures comprised subterranean clover (Trifolium subterraneum), and annual and Italian ryegrass (Lolium rigidum and L. multiflorum), the dominant species found in intensively grazed dairy and beef pastures of the region. Yields were measured when ryegrass plants had 3 leaves per tiller, which is when pastures in the region are grazed to maximise utilisation by cattle.Subsoil acidity was a problem at 4 of the 5 sites, and was so severe at 1 site that, despite having the lowest soil pH to 50 cm depth, there was no yield response to limestone incorporated to 3 cm deep. Applications of fertiliser magnesium had no significant effect on pasture production, soil pH, aluminium and manganese, or concentration of magnesium in dried herbage in any of the 5 experiments. Increasing amounts of limestone consistently: (i) increased soil pH, by between 1–2 pH units in the top 5 cm of soil, and 0.5–1.0 of a pH unit in the 5–10 cm soil profile; and (ii) decreased, by up to 84–98%, the amount of exchangeable aluminium in the 0–5 and 5–10 cm soil profiles. During 3 years (1998–2000) there were: (i) no yield responses to limestone for a total of 9 assessments on a sand, or 11 assessments on a sandy gravel; (ii) 2 significant (P<0.05) yield responses to limestone, from a total of 8 assessments on a loamy clay and from 9 assessments on a loam; (iii) 9 significant yield responses from a total of 13 assessments on a sandy loam (2 from 5 assessments in 1998, 3 from 4 assessments in 1999, and all 4 assessments in 2000). The sandy loam had the largest amount of exchangeable aluminium in the top 5 cm of soil [about 1.6 cmol(+)/kg, accounting for 35% of the exchangeable cations]. Increasing limestone applications did not induce deficiency or toxicity of any nutrient elements in subterranean clover or ryegrass dried herbage and, for dried herbage of bulk samples of both species, had no effect on dry matter digestibility, metabolisable energy and concentration of crude protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.