Abstract

Biogeochemical hotspots of nitrogen cycling such as ammonia oxidation commonly occur in riparian ecosystems. However, the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to water-level fluctuations (WLF) in riparian zones remain unclear. In this study, two patterns of WLF (gradual waterlogging and drying) were investigated in a 9-month column experiment, and the abundances and activities of AOA and AOB were investigated. The recovery evaluation revealed AOB abundance had not returned to the initial level at the end of the experiment, while AOA abundance had recovered nearly completely. AOA outnumbered AOB at almost all depths, and AOA showed higher resistance and adaptation to WLF than AOB. However, higher microbial abundance was not always linked to the larger contribution to nitrification. Changes in environmental parameters such as moisture and dissolved oxygen caused by WLF instead of ammonia-oxidizing microorganism (AOM) abundance might play a key role in regulating the expression of amoA gene and thus the activity of ammonia oxidizers. In addition, the community structure of AOM evolved over the incubation period. The composition of AOA species in sediment changed in the same way as that in soil, and the Nitrosopumilus cluster showed strong resistance to WLF. Conversely, waterlogging changed the community structure of AOB in soil while drying had no significant effect on the AOB community structure in sediment. This study suggests that the ammonia oxidizers will respond to WLF and eventually affect N fate in riparian ecosystems considering the coupling with other N transformation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.