Abstract

The paper studied the dynamic response of square aluminum corrugated sandwich panels under projectile impact. The aluminum foam projectile was utilized to apply the impulse on the sandwich panels. In order to increase the applied impulse under controlled impact velocity ( V < 200 m/s), a cylindrical Nylon mass was adhered to the back of foam projectile. Corrugated sandwich panels with two different configurations were tested and their typical deformation modes were obtained in the experiment. Based on the experiment, corresponding numerical simulations were presented. The energy absorption and deformation mechanism of corrugated sandwich panels were studied through the simulation. The influence of impact velocity, thickness of face sheet and wall thickness of corrugated core were discussed. The results indicated that the corrugated sandwich panels with smaller core height produce larger deformation than the panels with larger core height. The face sheets of corrugated sandwich panel absorbed comparable amount of energy with the corrugated core. The velocity histories show that under the combined action of aluminum foam projectile and nylon back mass, a second peak velocity of front face sheet can be produced during the impact process, which is defined as “accelerating impact stage” in current study. The influence of “accelerating impact stage” to the response of structures is sensitive to the impact velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call