Abstract

Applications of lime (CaCO3) and elemental sulphur (S0–S) may be important to obtain high yield of sesame (Sesamum indicum L.) in an acidic soil. Thus, the overall goal of the present study was to assess the impact of lime and S application on sesame yield under acidic soils in the Eastern Uttar Pradesh, India. Sesame was grown in an alley cropping system, which integrated trees with grain crops. The impacts on sesame yields were assessed for different rates of lime (0, 100, 250 and 350 kg/ha) and S (0, 15, 30 and 45 kg/ha). The field experiment was laid out in a factorial randomized block design with three replications of 16 treatment combinations. Application of lime at 250 kg/ha produced the best results in terms of the sesame yield (286.1 kg/ha) and improvements in soil chemical properties. Liming at 250 kg/ha increased available nutrients reserves (NPKS: 206, 21.9, 26.9, 16.2 kg/ha, respectively), soil pH (4.95), electrical conductivity (0.039 dS/m) and organic carbon (0.32%) over those in plots without liming (control). Similarly, significant effects of S application were observed in terms of the sesame yield (282.8 kg/ha) and improvements in soil chemical properties, e.g. available nutrient reserves of NPKS (205.6, 21.5, 262.8, 16.0 kg/ha, respectively), soil pH (4.35), electrical conductivity (0.036 dS/m) and organic carbon (0.314%) over those under control, while the minimum soil pH (4.35) was recorded with the application of 45 kg S than that under control (4.89). The interaction effects were significant between the lime and S levels on seed (361 kg/ha), stalk (426 kg/ha) and biological yield (887 kg/ha) for the application of 350 kg lime and 45 kg S/ha. Considering S as an important component of oil and lime for neutralizing soil acidity, their conjoint application is beneficial for farmers to sustain crop productivity in acidic soil of Eastern India.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.