Abstract
The dynamical behavior of a model for body fluids in response to an external electric field is computationally investigated for communication frequencies. The effect of an applied potential difference between two electrodes in a saline solution containing a rodlike macromolecule is studied by solving the Poisson and ion continuity equations simultaneously using the finite element method (FEM). Examples of such macromolecules are stiff fragments of DNA or actin filaments. The electric field of 66 Vm-1 is considered to be applied along the symmetry axis of the system with a frequency of 1 GHz. For times larger than a few microseconds, the aggregation of the counter ions around the macromolecule decreases. This result is consistent with the experimental evidence reported in the literature. In order to reach sufficient accuracy of the model, the effect of the electroosmotic flow is investigated on the counter ion number density and on the permittivity of the system, which shows negligible effect. The real and imaginary parts of effective complex permittivity are obtained as 73.43 and 3.61, respectively, which is in agreement with the experimental limits obtained for protein solution. It is notable that the analysis is applicable to the Global System for Mobile communications (GSM) which operates in the GHz frequency band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.