Abstract

To date, studies on the effect of sewage disturbances on treatment facilities were based on fixed-length flow variations, which are incapable of imitating the actual dynamic flow characteristics of municipal sewage. Here, an innovative dynamic influent disturbance control system is established in this study and applied in a novel denitrifying phosphorus removal (anaerobic anoxic oxic-biological contact oxidation, AAO-BCO) system to simulate seasonal and diurnal sewage fluctuations in laboratory-scale experiments. The results showed that, under sinusoidal influent flow perturbation, the effluent pollutant content followed a relatively gentle sinusoidal trend and did not always result in desired level of pollutant removal. The ability of the system to cope with sinusoidal flow variations was susceptible to the amplitude of diurnal sewage fluctuation, while stronger tolerance capacity was observed to seasonal and momentary increase in wastewater flowrate. There was also a discrepancy in the system buffering capacity towards various pollutants removal (COD > TIN > PO43−), which may be attributed to wide fluctuations in PO43−/NO3− and different decrease in metabolic activity of denitrifying phosphorus removal (DPR) sludge caused by extreme hydraulic retention times. To improve the robustness and stability of the DPR system, a regulating strategy was proposed to alleviate the biomass reduction and uncoordinated PO43−/NO3−.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call