Abstract
In response to growing environmental and economic concerns, developing new technologies prioritising safety, sustainability, and reliability has become imperative. In the energy sector, batteries play an increasingly significant role in applications such as powering electronic devices and vehicles. In this context, lithium-ion batteries have raised environmental concerns, driving the exploration of alternative technologies. Sodium-based batteries have emerged as an attractive option due to their environmental and economic advantages, as well as their potential for multi-functional applications. This study investigates a novel battery developed by a research team at the University of Porto, with a specific focus on its strain-sensing capabilities for potential applications in damage detection of structures. The battery under investigation is a novel all-solid-state design, comprised of a sodium-ion ferroelectric electrolyte and zinc and copper as the negative and positive electrodes, respectively. A series of quasi-static and dynamic tests are conducted to qualitatively assess the piezoelectric behaviour of the battery. The consistent findings show that the battery generates a difference in the electric potential in response to mechanical stimuli, thus confirming its piezoelectric nature. Furthermore, the results demonstrate the battery can accurately detect the operating frequencies of a shaker, despite encountering inherent electromagnetic interference noise from the electrical grid during testing. These promising outcomes highlight the substantial potential of this emerging technology for a wide range of applications, including but not limited to structural health monitoring systems. Given its novelty, this technology presents multi-functional capabilities for diverse practical future applications, such as energy harvesting that leads to self-powered structural health monitoring systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.