Abstract

Analytical determination of stresses and deformations caused by moving loads is vital to foundation and pavement designs. In current applications, moving loads are often approximated to be vertical impact loads. In this work, however, a live load is modelled as a uniform distribution of normal or shear stresses in actual motion. Then, a layer stiffness approach utilizing linear elasticity is followed in determining the surface and interior deformations due to the live load. By superimposing the two solutions for normal and shear surface stresses, the new approach can be made to provide an approximate solution to the problem of evaluating stresses and deformations caused by a wide wheel load rolling on a layered elastic system. Although elastic solutions in general are inadequate to explain the more significant consequences of pore pressure generation and dissipation in the soil subgrade, these results can certainly be useful to examine the shearing effects of wide rolling wheels on the asphalt layer and immediate settlement of the subgrade. It is found that the dynamic effects of a smoothly rolling wide load are significant at relatively low wheel velocities compared to those of shear waves in the subgrade and base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.