Abstract

Abstract The structure of a herbivore community may change consistently along the genetic cline of a host plant, change at particular points along the cline, or respond independently of the cline. To reveal such relationships between a gall wasp community and genetic variation in the host plant Quercus crispula, we examined patterns in the species richness and abundance of gall wasps along a genetic cline of the host plant, using 12 half-sib families from six different regions. The genetic relationships among the half-sib families of Q. crispula were quantified on the basis of leaf morphology, which represented a morphological cline from leaves typical of Q. crispula to leaves resembling another oak species, Q. dentata. The morphological cline could be regarded as a genetic cline caused by a history of hybridization with Q. dentata. The mean numbers of gall types varied among the half-sib families, but did not show a consistent increase or decrease along the genetic cline. This pattern could be explained by the fact that responses to host plant variation differed among the gall wasp species. The half-sib families were classified into three groups based on an ordination analysis of the species composition of the gall wasp community that to some extent also reflected the genetic cline of Q. crispula. This suggests that the species composition of gall wasps changed intermittently along the genetic cline, rather than gradually and consistently along the cline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.