Abstract
We provide an exact finite temperature extension to the recently developed Riemann-Hilbert approach for the calculation of response functions in nonadiabatically perturbed (multi-channel) Fermi gases. We give a precise definition of the finite temperature Riemann-Hilbert problem and show that it is equivalent to a zero temperature problem. Using this equivalence, we discuss the solution of the nonequilibrium Fermi-edge singularity problem at finite temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.