Abstract

An extensive suite of experiments was conducted to characterize the mechanical response of an S-2 glass composite. The primary interest was the response of a 3-D composite, consisting of unidirectional (non-woven) layers of glass fibers interlaced by through-thickness Z-yarns. A plain-weave material was also characterized for comparison purposes. Additionally, epoxy-only specimens were fabricated to assist in understanding the contribution of the SC-15 epoxy resin in the response of the composite system. Two new specimen geometries (torsion and hourglass) were developed specifically for this characterization effort. The response of these specimens provides considerable insight into the failure mechanics of the plain weave and 3-D weave composites. It was shown that the matrix material has an elastic-plastic response, but with different strengths in tension and torsion. The response of the composite in tension is controlled by the epoxy until failure at the glass-resin interface. The strength falls to zero for the plain-weave composite, but the Z-yarns can support tensile stress until the yarns begin to fail. The fibers contribute to the elastic stiffness in shear for the plain-weave material, but the failure strength in shear is the same as the matrix. The 3-D weave composite also fails at the failure strength of the matrix, but retains some shear strength because of the Z-yarns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call