Abstract

The paper presents a methodology for evaluating the actual response modification factors (q or R) of bridges and applies it to seven concrete bridges typical of the stock found in southern Europe. The usual procedure for analytically estimating the q-factor is through pushover curves derived for the bridge in (at least) its longitudinal and transverse directions. The shape of such curves depends on the seismic energy dissipation mechanism of the bridge; hence, bridges are assigned to two categories, those with inelastically responding piers and those whose deck is supported through bearings on strong, elastically responding piers. For bridges with yielding piers, the final value of the q-factor is found as the product of the overstrength-dependent component (qs) and the ductility-dependent component (qμ), both estimated from the pertinent pushover curve. For bridges with bearings and nonyielding piers of the wall type, an equivalent q-factor is proposed, based on spectral accelerations at failure and at design level. In this paper, pushover curves are also derived for an arbitrary angle of incidence of seismic action using a procedure recently developed by the authors, to investigate the influence of the shape of the pushover curve on the estimation of q-factors. It is found that in all cases the available force reduction factors are higher than those used for design to either Eurocode 8 or AASHTO specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.