Abstract

The earthquake loads imposed to the structures are generally much more than what they are designed for. This reduction of design loads by seismic codes is through the application of response modification factor (R-factor). During moderate to severe earthquakes, structures usually behave inelastically, and therefore inelastic analysis is required for design. Inelastic dynamic analysis is time consuming and interpretation of its results demands high level of expertise. Pushover analysis, recently commonly used, is however, a simple way of estimating inelastic response of structures. Despite its capabilities, conventional pushover analysis (CPA) does not account for higher mode effects and member stiffness changes. Adaptive pushover analysis (APA) method however, overcomes these drawbacks. This research deals with derivation and comparison of some seismic demand parameters such as ductility based reduction factor, Rμ, overstrength factor, Ω, and in particular, response modification factor, R, from capacity curves obtained from different methods of APA and CPA. Three steel moment-resisting frames of 3, 9 and 20 stories adopted from SAC steel project are analyzed. In pushover analyses for each frame, eight different constant as well as adaptive lateral load patterns are used. Among the main conclusions drawn is that the maximum relative difference for response modification factors was about 16% obtained by the methods of conventional and adaptive pushover analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.