Abstract

Ocean warming is an extreme environment event that has profound and lasting impacts on Symbiodiniaceae. However, their response mechanisms to elevated temperature exposure are poorly understood. In this study, the physiological and transcriptional responses of Effrenium voratum (Symbiodiniaceae) to ocean warming were examined. After exposure to 30°C, no significant variations in growth, chlorophyll a, or photosynthetic and respiration rates were observed, while a higher temperature (34°C) significantly reduced these physiological measurements. Meanwhile, lipid content and fatty acid composition were altered at high temperature (i.e., elevated degree of fatty acid saturation). Such biochemical constituents likely contributed to the mitigation of the negative effects of elevated temperatures. Furthermore, higher expression levels of genes related to the synthesis and elongation of fatty acids were detected at high temperature. The adjustment of lipids and fatty acid composition may be a potential mechanism by which E. voratum may survive under future global warming. ONE SENTENCE SUMMARY: The adjustment of lipids and fatty acid composition may be a potential mechanism by which E. voratum acclimate to future global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call