Abstract

Lake organic matter is one of the important forms of terrestrial carbon, and its sedimentary evolution is affected by many factors such as climate and sources. However, few studies have been conducted on the feedback mechanism of the sedimentary evolution of organic matter to climate change in cold and arid lakes. Historical variations and compositions of sources of the sediment organic matter (SOM) of Hulun Lake, a typical lake in the cold and arid region of China, were studied by multiple methods. The interactions and fee7dback mechanisms between the sedimentary evolution of SOM and climate change, and compositions of SOM source change, were also discussed. Overall, the characteristic indexes of the SOM, including total organic carbon (TOC), carbon stable isotope (δ13C), carbon to nitrogen ratio (C/N), and fluorescence intensity (FI) of the protein-like component in water extractable organic matter (WEOM), showed obvious and uniform characteristics of periodical changes. The indexes were relatively stable before 1920, and fluctuated from 1920 to 1979. Since the 1980s, values of TOC, δ13C, and FI of the protein-like component in WEOM has increased, while C/N decreased. The absolute dominant contribution of terrestrial source to the SOM had changed, and the relative average contribution rate of autochthonous source increased from 17.6% before 1920 to 36.9% after 2000. The increase of temperature, strong evaporation concentration effect, and change of compositions of SOM sources are the important driving factors of the sedimentary evolution of organic matter in Hulun Lake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call