Abstract

The ability to inhibit prepotent actions towards rewards that are made inaccessible by transparent barriers has been considered to reflect capacities for inhibitory control (IC). Typically, subjects initially reach directly, and incorrectly, for the reward. With experience, subjects may inhibit this action and instead detour around barriers to access the reward. However, assays of IC are often measured across multiple trials, with the location of the reward remaining constant. Consequently, other cognitive processes, such as response learning (acquisition of a motor routine), may confound accurate assays of IC. We measured baseline IC capacities in pheasant chicks, Phasianus colchicus, using a transparent cylinder task. Birds were then divided into two training treatments, where they learned to access a reward placed behind a transparent barrier, but experienced differential reinforcement of a particular motor response. In the stationary-barrier treatment, the location of the barrier remained constant across trials. We, therefore, reinforced a fixed motor response, such as always go left, which birds could learn to aid their performance. Conversely, we alternated the location of the barrier across trials for birds in the moving-barrier treatment and hence provided less reinforcement of their response learning. All birds then experienced a second presentation of the transparent cylinder task to assess whether differences in the training treatments influenced their subsequent capacities for IC. Birds in the stationary-barrier treatment showed a greater improvement in their subsequent IC performance after training compared to birds in the moving-barrier treatment. We, therefore, suggest that response learning aids IC performance on detour tasks. Consequently, non-target cognitive processes associated with different neural substrates appear to underlie performances on detour tasks, which may confound accurate assays of IC. Our findings question the construct validity of a commonly used paradigm that is widely considered to assess capacities for IC in humans and other animals.

Highlights

  • Inhibitory control (IC) is the ability to refrain prepotent responses and delay gratification (Diamond 2013)

  • Improvements in performances across trials on detour tasks may be facilitated by cognitive processes associated with the visual location of the reward and involve neural substrates that are unrelated to inhibitory control (IC) per se

  • We found that the reinforcement of a fixed behavioural response improved subsequent IC performance

Read more

Summary

Introduction

Inhibitory control (IC) is the ability to refrain prepotent responses and delay gratification (Diamond 2013). With subsequent experience of the task, subjects may, improve their ability to inhibit these prepotent responses and instead detour around the barrier to obtain the goal (van Horik et al 2018a, b). These findings suggest that other processes of learning may mediate performances across repeated trials on these tasks, potentially confounding reliable assays of IC. Controlled studies, using animal models, suggest that the cognitive constructs that underlie performances on some commonly used IC tasks remain unclear (van Horik et al 2018a, b; Völter et al 2018)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call