Abstract
Olfaction begins with the detection of odorants by olfactory receptor neurons (ORNs) in the nasal cavity. Olfactory transduction is mediated by a G protein–coupled transduction cascade culminating in the opening of the two olfactory transduction ion channels, the olfactory CNG channel and the Ca2+-activated Cl− channel anoctamin 2 (Ano2), and ultimately action potential (AP) generation. The mechanisms that activate olfactory transduction have been understood quite well over the last two decades. Mechanisms of response adaptation, however, have actually become much less clear, with mechanisms previously thought to be important now suggested to play less significant roles, raising the question of which transduction components are the target of adaptational feedback. Because ORNs are often stimulated rhythmically by the inhalation of odorants, fast response termination should be a prerequisite to adequately resolve the temporal aspect of the stimulus. Recent progress suggests that mechanisms that regulate ciliary Ca2+ transients dictate kinetics of transduction termination. Ultimately, the question to answer is how ORNs code for “natural” stimuli in the behaving animal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.