Abstract

Using the pulse shape discrimination method combined with the time of flight technique, we have obtained the response function of a 2″ diameter × 2″ thick NE213 scintillator by measuring directly the proton recoil energy spectrum of 0.5–6 MeV prompt neutrons from a 252Cf source. Three parameters, time of flight (TOF), pulse shape discrimination (PSD) and recoil energy (RE), were recorded in an event-by-event mode with a TOF gate. We attempted to improve the determination of maximum proton recoil energies equal to incident neutron energies by employing two analysis methods. First, we attempted to separate better neutrons from coexisting gamma rays in the PSD spectrum by projecting neutron channels of the PSD spectrum onto both TOF and RE spectra in a cubic matrix constructed by the three-parameter data. The resulting two-dimensional matrix composed of TOF and RE channels was free from gamma rays and corresponding Compton-recoiled electrons, and then projected with neutron energy bins of 0.05 MeV wide determined by TOF. Finally, to determine the maximum proton recoil energies from each RE spectrum with a realistic function, accounting for the nonlinear response of the NE213 scintillator due to the quenching effect, we performed a least-squares fit to the RE spectrum using the four-parameter function. The response function obtained in the present work agrees well with previous experimental results obtained by Gul et al. (Nucl. Instr. and Meth. A 278 (1989) 470) and a Monte Carlo study by Cecil et al. (Nucl. Instr. and Meth. 161 (1979) 439).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call