Abstract

Florfenicol (FF) is widely used in aquaculture and can interfere with denitrification when released into natural ecosystems. The aim of this study was to analyze the response characteristics of nirS-type denitrifier Paracoccus denitrificans under FF stress and further mine antibiotic-responsive factors in aquatic environment. Phenotypic analysis revealed that FF delayed the nitrate removal with a maximum inhibition value of 82.4% at exponential growth phase, leading to nitrite accumulation reached to 21.9-fold and biofilm biomass decreased by ~38.6%, which were due to the lower bacterial population count (P < 0.01). RNA-seq transcriptome analyses indicated that FF treatment decreased the expression of nirS, norB, nosD and nosZ genes that encoded enzymes required for NO2− to N2 conversion from 1.02- to 2.21-fold (P < 0.001). Furthermore, gene associated with the flagellar system FlgL was also down-regulated by 1.03-fold (P < 0.001). Moreover, 10 confirmed sRNAs were significantly induced, which regulated a wide range of metabolic pathways and protein expression. Interestingly, different bacteria contained the same sRNAs means that sRNAs can spread between them. Overall, this study suggests that the denitrification of nirS-type denitrifiers can be hampered widely by FF and the key sRNAs have great potential to be antibiotic-responsive factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.