Abstract
The freeze-thaw of early spring in China’s Qinghai-Tibet Plateau is often accompanied by severe droughts. Artemisia annua, widely distributed in China, releases allelopathic substances, mainly artemisinin, to the environment and exerts a wide range of effects on crops. This paper studied the physiological effects of highland barley under freeze-thaw, drought, and artemisinin stress through indoor simulation experiments. The physiological response characteristics of superoxide dismutase (SOD) activity, catalase (POD) activity, net photosynthetic rate, relative water content (RWC), relative electrical conductivity, malondialdehyde (MDA) content, and soluble protein content in highland barley were analyzed. The results showed that artemisinin and drought contributed to the increase of SOD activity and the decrease of POD activity. Under the freeze-thaw stress, the SOD and POD activities both decreased firstly and then increased, but the effect of compound stress on POD was more complicated. Either artemisinin, drought, or low temperature could reduce the net photosynthetic rate of highland barley. Low temperature had more significant impacts on photosynthesis, and compound stress would show a single stress superimposed effect. Artemisinin, drought, and low temperature could reduce the RWC of highland barley, and increase the relative electrical conductivity and the concentration of soluble protein (except for low temperature stress above zero, which reduces the concentration of soluble protein). However, the effect of compound stress on soluble protein is more complex. The single stress of artemisinin and drought had no obvious effect on MDA content, while the MDA content was increased significantly under the freeze-thaw stress and the compound stress of artemisinin and drought, and the MDA content reached its peak at T1. The results are helpful to explore the effects of freeze-thaw, drought and artemisinin stress on the growth of highland barley under the background of the aridification of the Qinghai-Tibet Plateau, and provide ideas for rational agricultural management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.