Abstract

In Qinghai-Tibet Plateau, crops are commonly subjected to freeze-thaw and salt stress factors simultaneously, and allelopathy is common, which affects the growth of highland barley (Hordeum vulgare L.), the largest food crop in Tibet. In order to explore the effects of artemisinin, salt and freeze-thaw (FAS) stress on physiological characteristics of highland barley seedlings, hydroponic experiment was carried out with the addition of 20mg/L artemisinin and 150mMNaCl as well as the simulation of freeze-thaw environment. The results suggested that under combined stress, the soluble protein content in combined stresses of artemisinin, FAS increased by 97.8%, the variation of relative conductivity in FAS group was lower than that in combined salt and freeze-thaw stress (FS), the relative water content decreased significantly (P <0.05), the malondialdehyde (MDA), H2 O2 and soluble sugar content in FAS group accumulated but less than those in FS group, and the superoxide dismutase (SOD) activity in combined artemisinin and freeze-thaw stress (FA) and FAS groups decreased. In addition, after freeze-thaw treatment, photosynthesis was weakened, and internal CO2 conentration (C i ) in FAS group significantly decreased (P <0.05). This study proved that appropriate amount of artemisinin can alleviate the damage of salt and freeze-thaw stress on barley seedlings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call