Abstract

BackgroundCells detaching from the primary tumor site are metastasis initiator cells, and the detection of CTC, known as liquid biopsy, is an important test of biomarkers of cancer progression. We investigated the molecular characterization of circulating tumor cells (CTCs), profiled the plasma microRNA (miR) content, and analyzed the relationship with the clinical outcomes by sampling the peripheral blood from patients with locally advanced breast cancer before and after neoadjuvant chemotherapy. Patients and MethodsMarkers of breast cancer, epithelial–mesenchymal transition (EMT), drug resistance, and stem cells were used for CTC isolation and characterization. Plasma miR profiles were obtained from selected patients with CTC positivity determined using next-generation sequencing. ResultsThe proportion of CTC, EMT, and stem cell marker positivity was 16.7%, 8.3%, and 25% before and 18.2%, 15.2%, and 9.1% after treatment, respectively. A significant correlation was found between the pretreatment CTCs and ALDH1 positivity (P = .0245). These CTCs with stemness properties were observed in most hormone receptor–positive, human epidermal growth factor receptor 2–negative cases and were also present with a high incidence in cases of early metastasis. miR-146b-5p and miR-199a-5p, which are involved in metastasis, invasion, and EMT, were accompanied by CTC positivity, and miR-4646-3p was associated with the development of early metastasis. ConclusionsMolecular characterization of CTCs and miR profiling of serial samples from patients with locally advanced breast cancer during neoadjuvant chemotherapy appears to be a very useful in predicting cure and clinical course and might be a key to developing new targeted therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.