Abstract
Through a convective acceleration component, the equations of motion for axially-moving materials are skew-symmetric in the state space formulation, so that the response problem is best analyzed within the broader context of continuous gyroscopic systems. With particular application to the prototypical traveling string and beam models, a modal analysis that associates degrees of freedom with the complex state eigenfunctions and their conjugates is presented. This procedure is well-suited for harmonic excitation sources, and in some instances, it is more convenient than previous methods which decompose the modal coordinates, eigenfunctions, and generalized forces into real and imaginary components. Also from the state space perspective, Rayleigh’s quotient for gyroscopic systems provides a variational method for determining the eigensolutions of axially-moving materials. Ritz discretization of the quotient can make effective use of the speed-adapting modes of the traveling string and beam models as they are rich in phase, as well as amplitude, content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.