Abstract

This study presents a non-linear constitutive equation for the rolling guide-shoes associated with a high-speed elevator system. This was done to accurately evaluate the dynamic behavior of a high-speed elevator car and analyze the action mechanism of random factors during manufacturing and installation on the dispersion of vibration acceleration. Through the combination of the Hertz contact theory and the Bouc-Wen hysteretic model, the non-linear vibration model of the elevator car system was founded. This model was equivalent to a linear system by least squares technique, and then the random parameters and the random excitation were converted by random perturbation method and pseudo excitation method. The acceleration response sensitivities of each random parameters, the means and standard deviations of transverse vibration acceleration responses at the observation point were obtained. In the case, the transverse vibration acceleration responses of the car system were calculated. The elevator car’s vibration instance was analyzed under the different degrees of variation of the random parameters and the random excitation. The results showed that the randomness of geometric parameters has the greatest influence on transverse acceleration. The variability of parameters affects the dispersion degree of the transverse vibration responses while the variability of the excitation mainly affects the amplitude of the vibration response. This study provides an effective method for the analysis of non-linear compound random vibration responses of high-speed elevator car system, and provides a reference for the vibration control design and safety assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call