Abstract

The relationship between cartilage and synovium is a rapidly growing area of osteoarthritis research. However, to the best of our knowledge, the relationships in gene expression between these two tissues have not been explored in mid-stage disease development. The current study compared the transcriptomes of these two tissues in a large animal model one year following posttraumatic osteoarthritis induction and multiple surgical treatment modalities. Thirty-six Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair augmented with an extracellular matrix (ECM) scaffold, followed by RNA sequencing of the articular cartilage and synovium at 52 weeks after harvest. Twelve intact contralateral knees served as controls. Across all treatment modalities, the primary difference in the transcriptomes was that the articular cartilage had greater upregulation of genes related to immune activation compared to the synovium-once baseline differences between cartilage and synovium were adjusted for. Oppositely, synovium featured greater upregulation of genes related to Wnt signaling compared to articular cartilage. After adjusting for expression differences between cartilage and synovium seen following ligament reconstruction, ligament repair with an ECM scaffold upregulated pathways related to ion homeostasis, tissue remodeling, and collagen catabolism in cartilage relative to synovium. These findings implicate inflammatory pathways within cartilage in the mid-stage development of posttraumatic osteoarthritis, independent of surgical treatment. Moreover, use of an ECM scaffold may exert a chondroprotective effect over gold-standard reconstruction through preferentially activating ion homeostatic and tissue remodeling pathways within cartilage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.