Abstract

Swimming dynamics of the giant Australian cuttlefish, Sepia apama, were investigated using swimtunnel respirometry. Relationships between jet pressure, fin frequency, swimming speed and oxygen consumption were defined. Laboratory calibration of swimming parameters is necessary to allow estimates of swimming costs in the field. Jet pressure was the best predictor of oxygen consumption with an averaged equation of MO2 = 722 (jet pressure) + 107 r 2 = 0.51. Individually, fin frequency and jet pressure correlated highly to swimming speed, but due to the complicated usage of finning and jetting, the correlation between swimming speed and oxygen consumption was weaker. Cuttlefish were not optimal swimtunnel subjects and could not swim at high speeds for extended periods. At 15°C and a swimming speed of 0.06 m s−1, the gross cost of transport was calculated to be 10.1 kg−1 m −1, with a net cost of 4.1 kg−1 m−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.