Abstract

Fishes living in fresh water counter the passive loss of salts by actively absorbing ions through specialized cells termed ionocytes. Ionocytes contain ATP-dependent transporters and are enriched with mitochondria; therefore ionic regulation is an energy-consuming process. The purpose of this study was to assess the aerobic costs of ion transport in larval zebrafish (Danio rerio). We hypothesized that changes in rates of Na+ uptake evoked by acidic or low Na+ rearing conditions would result in corresponding changes in whole-body oxygen consumption (ṀO2 ) and/or cutaneous oxygen flux (JO2 ), measured at the ionocyte-expressing yolk sac epithelium using the scanning micro-optrode technique (SMOT). Larvae at 4 days post-fertilization (dpf) that were reared under low pH (pH4) conditions exhibited a higher rate of Na+ uptake compared with fish reared under control conditions (pH7.6), yet they displayed a lower ṀO2 and no difference in cutaneous JO2 Despite a higher Na+ uptake capacity in larvae reared under low Na+ conditions, there were no differences in ṀO2 and JO2 at 4 dpf. Furthermore, although Na+ uptake was nearly abolished in 2 dpf larvae lacking ionocytes after morpholino knockdown of the ionocyte proliferation regulating transcription factor foxi3a, ṀO2and JO2 were unaffected. Finally, laser ablation of ionocytes did not affect cutaneous JO2 Thus, we conclude that the aerobic costs of ion uptake by ionocytes in larval zebrafish, at least in the case of Na+, are below detection using whole-body respirometry or cutaneous SMOT scans, providing evidence that ion regulation in zebrafish larvae incurs a low aerobic cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call