Abstract

A highly sensitive respirometric method is presented that allows real-time monitoring of reaction rates involving H2 and O2 during electrochemical polarization. The measurement approach is based on simultaneous monitoring of the changes in the total pressure and the O2 partial pressure inside a closed chamber. Hence, it is possible to quantify the rates resulting from reactions such as HER, ORR and OER as a function of the applied potential. As a result, deconvolution of the net electric current into cathodic and anodic partial reaction rates during electrochemical polarization can be obtained. It was demonstrated that the respirometric monitoring approach can reveal superfluous cathodic reactions from Al during cathodic polarization as well as during anodic polarization of Al and Mg AZ31. Thus, the true metal oxidation rate could be determined from the electric current and the cathodic reaction rates. Furthermore, the rate of the HER during cathodic electrodeposition of Zn was measured. Through respirometric monitoring of Ni and stainless steel at high anodic potentials, the rate of O2 evolution could be distinguished from electrode oxidation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.