Abstract

AbstractThe nitrification process (ie biological ammonium oxidation to nitrate) is a two‐step process with nitrite as an intermediate product. As it is an aerobic process, its kinetics is highly dependent on the dissolved oxygen (DO) concentration in the medium. However, the influence of this limitation on the nitritation (first step) is shown to be less important than in the nitratation (second step). This dependence on DO concentration is generally described using a Monod‐type kinetics with KO as the oxygen affinity constant. In this work, a procedure for the calculation of both affinity constants is presented. This procedure is based on monitoring the DO drop in the reactor when external aeration is stopped and the biomass is consuming without substrate (ammonium or nitrite) limitations. This methodology includes the contemplation of the oxygen transfer from the atmosphere, the response time of the DO probe and the inhibition of the nitratation step with sodium azide when estimating KOA (nitritation oxygen affinity constant). The results obtained are KOA = 0.74 ± 0.02 mg O2 dm−3 and KON = 1.75 ± 0.01 mg O2 dm−3. Moreover the influence of the aforementioned considerations on the estimated KO values is also discussed. Copyright © 2005 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.