Abstract

To demonstrate the feasibility of respiratory gating during whole-body scan for lung lesions in routine 18F-FDG PET/CT examinations using a time-of-flight (TOF)-capable scanner to determine the effect of respiratory gating on reduction of both misregistration (between CT and PET) and image blurring, and on improvement of the maximum standardized uptake value (SUVmax). Patients with lung lesions who received FDG PET/CT were prospectively studied. Misregistration, volume of PET (Vp), and SUVmax were compared between ungated and gated images. The difference in respiratory gating effects was compared between lesions located in the upper or middle lobes (UML) and the lower lobe (LL). The correlation between three parameters (% change in misregistration, % change in Vp, and lesion size) and % change in SUVmax was analyzed. The study population consisted of 60 patients (37 males, 23 females; age 68±12years) with lung lesions (2.5±1.7cm). Fifty-eight out of sixty respiratory gating studies were successfully completed with a total scan time of 20.9±1.9min. Eight patients' data were not suitable for analysis, while the remaining 50 patients' data were analyzed. Respiratory gating reduced both misregistration by 21.4% (p<0.001) and Vp by 14.2% (p<0.001). The SUVmax of gated images improved by 14.8% (p<0.001). The % change in misregistration, Vp, and SUVmax by respiratory gating tended to be larger in LL lesions than in UML lesions. The correlation with % change in SUVmax was stronger in % change in Vp (r=0.57) than % change in misregistration (r=0.35). There was no statistically significant correlation between lesion size and % change in SUVmax (r=-0.20). Respiratory gating during whole-body scan in routine TOF PET/CT examinations is feasible and can reduce both misregistration and PET image blurring, and improve the SUVmax of lung lesions located primarily in the LL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.