Abstract

The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. The airways have been linked with the trafficking of myelin-specific T-cells in the preclinical stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Th17 cells are important pathogenic effectors in MS and EAE but are innocuous immediately following differentiation. Upregulation of the cytokine GM-CSF appears to be a critical step in their acquisition of pathogenic potential, but little is known about the mechanisms that mediate this process. Here, primed myelin-specific Th17 cells were transferred to congenic recipient mice prior to exposure to various human respiratory tract-associated bacteria and T-cell trafficking, phenotype and the severity of resulting EAE were monitored. Disease was exacerbated in mice exposed to the Proteobacteria Moraxella catarrhalis and Klebsiella pneumoniae, but not the Firmicute Veillonella parvula, and this was associated with significantly increased GM-CSF+ and GM-CSF+IFNγ+ ex-Th17-like donor CD4 T cells in the lungs and central nervous system (CNS) of these mice. These findings support the concept that respiratory bacteria may contribute to the pathophysiology of CNS autoimmunity by modulating pathogenicity in crucial T-cell subsets that orchestrate neuroinflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.