Abstract

Despite their powerful antiinflammatory effect, glucocorticoids have shown no significant clinical benefit in respiratory syncytial virus (RSV)-induced bronchiolitis, the reason for which remains unclear. Upon glucocorticoid binding, the cytoplasmic glucocorticoid receptor (GR) translocates to the nucleus with the help of importin 13 (IPO13). Here, we report that RSV infection reduced GR nuclear translocation in nasopharyngeal aspirates from RSV-infected infants, lungs of infected mice, and A549 cells, which coincided with decreased IPO13 expression. This led to repression of GR-induced antiinflammatory genes, such that dexamethasone failed to suppress airway inflammation and airway hyperresponsiveness in the infected mice. The anti-GR effect of RSV was mediated by viral nonstructural protein 1 , which likely functioned by competing with IPO13 for GR binding. Our findings provide a mechanism for the ineffectiveness of glucocorticoids in RSV-related disease and highlight the potential to target the IPO13-GR axis as a treatment for multiple glucocorticoid-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.