Abstract
Ambulatory respiratory sinus arrhythmia (RSA) or high-frequency heart rate (HR) variability is frequently employed as an index of cardiac parasympathetic control and related to risk or severity of cardiovascular disease. However, laboratory studies indicate variations in physical activity and respiratory parameters of rate and tidal volume may confound estimation of vagal activity. Because little is known about these relations outside the laboratory, we examined ambulatory relations among RSA, respiration, physical activity, and HR during waking hours by employing a multichannel monitoring system. Forty healthy young-to-middle aged adults underwent daytime monitoring that included continuous registration of the ECG, respiration (inductance plethysmography), and accelerometry motion activity. Within-individual regression analyses were performed to examine minute-to-minute relations between RSA and respiration, HR, and indexes of physical activity (minute ventilation and motion). HR changes were assumed to be strongly related to within-individual variations of vagal tone. RSA adjusted for respiratory parameters and unadjusted RSA were compared for strength of prediction of other measures. Unadjusted RSA was related to respiratory parameters (R = 0.80) and moderately predicted minute-to-minute HR and activity variances (means = 56%, HR; 48%, minute ventilation; and 37%, motion). Adjusted RSA predicted significantly more HR and activity variance (means = 75%, 76%, and 57%, respectively) with narrower confidence intervals. We conclude that ambulatory RSA magnitude is associated with respiratory variations and physical activity. Adjustment for respiratory parameters substantially improves relations between RSA and significantly vagally mediated HR and physical activity. Concurrent monitoring of respiration and physical activity may enhance HR variability accuracy to predict autonomic control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.