Abstract

Extinction selectivity determines the direction of macroevolution, especially during mass extinction; however, its driving mechanisms remain poorly understood. By investigating the physiological selectivity of marine animals during the Permian-Triassic mass extinction, we found that marine clades with lower O2-carrying capacity hemerythrin proteins and those relying on O2 diffusion experienced significantly greater extinction intensity and body-size reduction than those with higher O2-carrying capacity hemoglobin or hemocyanin proteins. Our findings suggest that animals with high O2-carrying capacity obtained the necessary O2 even under hypoxia and compensated for the increased energy requirements caused by ocean acidification, which enabled their survival during the Permian-Triassic mass extinction. Thus, high O2-carrying capacity may have been crucial for the transition from the Paleozoic to the Modern Evolutionary Fauna.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.