Abstract
To assess respiratory motion models for coronary magnetic resonance angiography (CMRA). In this study various motion models that describe the respiration-induced 3D displacements and deformations of the main coronary arteries were compared. Multiple high-resolution 3D coronary MR images were acquired in healthy volunteers using navigator-based respiratory gating, each depicting the coronary vessels at different respiratory motion states. In the images representing the different inspiratory states the displacements and deformations of the main coronary vessels with respect to the end-expiratory state were determined, by means of elastic registration. Several correction models (superior-inferior (SI) translation, 3D translation, and 3D affine transformation) were tested and compared with respect to their ability to map a selected inspiratory to the end-expiratory motion state. 3D translation was found to be superior over SI translation, which is commonly used for prospective motion correction in CMRA. The 3D affine transformation was found to be the best correction model considered in this study. Furthermore, a large intersubject variability of the model parameters was observed. The results of this study indicate that a patient-adapted 3D correction model (3D translation or better 3D affine) will considerably improve prospective motion correction in CMRA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.