Abstract

Background and objective: This study was performed to assess the accuracy of respiratory inductive plethysmographic (RIP) estimated lung volume changes at varying positive end-expiratory pressures (PEEP) during different degrees of acute respiratory failure.Methods: Measurements of inspiratory tidal volume were validated in eight piglets during constant volume ventilation at incremental and decremental PEEP levels and with increasing severity of pulmonary injury. RIP accuracy was assessed with calibration from the healthy state, from the disease state as the measurement error was assessed, and at various PEEP levels.Results: Best results (bias 3%, precision 7%) were obtained in healthy animals. RIP accuracy decreased with progressing degrees of acute respiratory failure and was PEEP dependent, unless RIP was calibrated again. When calibration was performed in the disease state as the measurement error was assessed, bias was reduced but precision did not improve (bias – 2%, precision 9%).Conclusions: RIP accuracy is within the accuracy range found in monitoring devices currently in clinical use. Most reliable results with RIP are obtained when measurements are preceded by calibration in pulmonary conditions that are comparable to the measurement period. When RIP calibration is not possible, fixed weighting of the RIP signals with species and subject size adequate factors is an alternative. Measurement errors should be taken into account with interpretation of small volume changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.