Abstract
OBJECTIVE We evaluated the respiratory-induced changes in branch vessel geometry after thoracoabdominal fenestrated endovascular aneurysm repair (fEVAR) with the Bentley BeGraft graft (Innomed GmbH, Hechingen, Germany) as the covered bridging stent. METHODS Patients treated with fEVAR for thoracoabdominal aortic aneurysms with a custom-made Zenith fenestrated endograft (Cook Medical Europe Ltd, Limerick, Ireland) and Bentley BeGraft peripheral stents were prospectively recruited. Using SimVascular software (Open-Source Medical Software Corp, San Diego, CA), the pre- and postoperative aortic and branch contours were segmented from computed tomography angiograms performed during inspiratory and expiratory breath-holds. The centerlines were extracted from the lumen contours, from which the branch take-off angles, distal stent angles, and peak branch curvature changes were computed. Paired, two-tailed t tests were performed to compare the pre- and postoperative deformations. RESULTS Renovisceral vessel geometry was evaluated in 12 patients undergoing fEVAR with a total of 46 target vessels (10 celiac arteries, 12 superior mesenteric arteries [SMAs], 24 renal arteries). Implantation of BeGraft bridging stents was associated with a significant reduction in respiration-induced changes in vessel branch angulation (Δ5.3° ± 3.9° vs Δ12.0° ± 8.3° [postoperative vs preoperative]; P = .001) and mean curvature (0.72 ± 0.22 cm-1 vs 0.53 ± 0.18 cm-1) in the renal arteries, without significant changes in the celiac arteries or SMAs. No significant difference was found in end-stent angle motion in the renal arteries (P = .77), celiac arteries (P = .34), or SMAs (P = .55). The maximum local vessel curvature change decreased after fEVAR in the SMAs (Δ0.28 cm-1 vs Δ0.47 cm-1; P = .04) but was unchanged in the celiac (P = .61) and renal (P = .51) arteries. CONCLUSIONS Implantation of the BeGraft as a bridging stent in fEVAR was associated with decreased respiratory-induced deformation in the renal branch take-off angulation and mean renal artery curvature, with reduced maximum curvature bending in the SMA compared with the preoperative anatomy. However, the BeGraft allowed for celiac and renal artery bending similar to that in the native preoperative state. These findings suggest that the use of BeGraft peripheral stents with fEVAR will closely mimic the native arterial branch geometry and vessel conformability caused by relatively aggressive respiratory motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.