Abstract
The impact of underwater exercise on respiratory function remains unclear when its metabolic rate is matched with exercise performed on land. Therefore, we compared the breathing responses and respiratory function during and after water (WC)‐ and land (LC)‐based cycling performed at the matched oxygen uptake (VO2). Twelve healthy men performed 15 min of incremental WC and LC on separate days. During WC, participants cycled continuously at 30, 45, and 60 rpm (stages 1, 2, and 3) for 5 min each. During LC, participants cycled at 60 rpm for 15 min while wattage was increased every 5 min and adjusted to match VO2 to the WC condition. Breathing patterns during cycling and spirometry data before and after cycling were collected. VO2 during WC and LC was similar. Respiratory rate (WC: 27 ± 3 vs. LC: 23 ± 4 bpm, p = 0.012) and inspiratory flow (WC: 1233 ± 173 vs. LC: 1133 ± 200 ml/s, p = 0.035) were higher and inspiratory time (WC: 1.0 ± 0.1 vs. LC: 1.2 ± 0.2 s, p = 0.025) was shorter at stage 3 during WC than LC. After WC, forced vital capacity (p = 0.010) significantly decreased while no change was observed after LC. These results suggest that at similar metabolic rates during WC and LC, breathing is slightly shallower during WC which may have chronic effects on respiratory muscle function after multiple bouts of aquatic cycling. Underwater exercise may be beneficial for respiratory muscle rehabilitation when performed on a chronic basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.