Abstract

ABSTRACT The O2 consumption and CO2 release of nine giant tortoises Testudo gigantea (weight range 118 g–35·5 kg) were measured at a temperature of about 25·5 °C. Four European tortoises Testudo hermanni (weight range 640 g-2·16 kg) were also used. The mean RQ values obtained were 1·01 for T. gigantea and 0·97 for T. hermanni. These values were not influenced by activity or size. The data was analysed by plotting log/log regression lines relating body weight to O2 consumption. Both maximum and minimum metabolic rates recorded for each individual T. gigantea showed a negative correlation with body weight. For active rates the relation was O2 consumption = 140·8 W0·97, whereas for inactive animals O2 consumption = 45·47 W0·82. The maximum rates were obtained from animals that were observed to be active in the respirometer and the minimum rates from animals that remained quiet throughout. The scope for activity increased with body size, being 82 ml/kg/h for animals of 100 g and 103 ml/kg/h for 100 kg animals. The corresponding ratio between maximum and minimum rates increases from about 2 to 6 for the same weight range. Values for metabolic rate in T. hermanni seem to be rather lower than in T. gigantea. Analysis of the relative proportion of the shell and other organs indicates that the shell forms about 31 % of the body weight in adult T. hermanni but only about 18% in T. gigantea of similar size. The shell is not appreciably heavier in adult T. gigantea (about 20 %). Data obtained for inactive animals is in good agreement with results of other workers using lizards and snakes. Previous evidence suggesting that chelonians show no reduction in metabolic rate with increasing size is not considered to conflict with data obtained in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.