Abstract

Particulate air pollution is linked to impaired respiratory health. We analyzed particle emissions from common indoor sources (candles burning (CB), toasting bread (TB), frying sausages (FS)) and lung function in 55 healthy volunteers (mean age 33.0 years) in a randomized cross-over controlled exposure study. Lung-deposited particle surface area concentration (PSC), size-specific particle number concentration (PNC) up to 10 µm, and particle mass concentration (PMC) of PM1, PM2.5 and PM10 were determined during exposure (2 h). FEV1, FVC and MEF25%–75% was measured before, 4 h and 24 h after exposure. Wilcoxon-rank sum tests (comparing exposure scenarios) and mixed linear regression using particle concentrations and adjusting for personal characteristics, travel time and transportation means before exposure sessions were performed. While no effect was seen comparing the exposure scenarios and in the unadjusted model, inverse associations were found for PMC from CB and FS in relation to FEV1 and MEF25%–75%. with a change in 10 µg/m3 in PM2.5 from CB being associated with a change in FEV1 of −19 mL (95%-confidence interval:−43; 5) after 4 h. PMC from TB and PNC of UFP were not associated with lung function changes, but PSC from CB was. Elevated indoor fine particles from certain sources may be associated with small decreases in lung function in healthy adults.

Highlights

  • Exposure to ambient particulate matter (PM) is linked to increased morbidity and mortality with over a million premature deaths worldwide [1,2,3]

  • Based on several inverse associations from the linear regression analysis adjusted for transport means and other covariates, our study indicates a possible association of short-term exposure to fine and ultrafine particles emitted from common indoor sources with small decreases in lung function in healthy adults

  • In our study of short-term exposure of healthy adults, we found some associations of fine particles emitted from common indoor sources in the fully adjusted model that took account of the means of transportation on the day of the exam

Read more

Summary

Introduction

Exposure to ambient particulate matter (PM) is linked to increased morbidity and mortality with over a million premature deaths worldwide [1,2,3]. To date the majority of studies investigated ambient particles, in most industrialized countries people spend most of their time indoors [15] and significant emissions of fine and ultrafine particles leading to human exposure are caused by various indoor activities. These encompass for example candles burning, preparation of food, cleaning activities, use of electric engines or use of furnaces [16]

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.