Abstract

1. 1. Difference spectra of whole cells and of a particulate fraction of a streptomycin-bleached strain of Euglena gracilis showed the presence of a b-type cytochrome, cytochrome b (561 Euglena), and an a-type cytochrome, cytochrome a-type (609 Euglena). The cytochromes were characterized by pyridine hemochromogen formation and were found associated with a particulate fraction enriched with mitochondria. 2. 2. Both b-type and a-type cytochromes were reduced by succinate, oxidized by oxygen and reacted with a soluble c-type cytochrome, cytochrome c-type (556 Euglena), in reversible oxidation-reduction reactions. The steady-state level of reduction for each cytochrome was 92, 22 and 5% of the anaerobic level for the b-type, c-type and a-type cytochrome, respectively. 3. 3. Oxidation of c-type and a-type cytochromes was completely inhibited by cyanide, although respiration of a particulate fraction was only 60% inhibited by the same concentration of cyanide. Antimycin A inhibited respiration by up to 70% but completely inhibited reduction of the c-type cytochrome. 4. 4. The data suggest that electron transfer in the respiratory pathway of Euglena involves the b-, c- and a-type cytochrome in a direct sequence. The cyanide and antimycin A-insensitive oxidation pathway is considered to involve a more direct oxidation of the b-type cytochrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call