Abstract

In this study, we examined the cardiorespiratory patterns of harbour seal pups under normoxic/normocarbic (air), hypoxic/normocarbic (15%, 12%, and 9% O2 in air), and normoxic/hypercarbic (2%, 4%, and 6% CO2 in air) conditions while awake and sleeping on land. Animals were chronically instrumented to record electroencephalogram (EEG), electromyogram (EMG), and electrocardiogram (EKG) signals, which, along with respiration (whole-body plethysmography) and oxygen consumption (VO2), were recorded from animals breathing each gas mixture for 2-4 h on separate days. Our results show that for animals breathing air, VO2 was not significantly lower during slow-wave sleep (SWS; 7.71 +/- 0.39 mL O2 min(-1) kg(-1); all measurements are mean +/- SEM) than during wakefulness (WAKE; 8.80 +/- 0.25 mL O2 min(-1) kg(-1)) and was unaffected by changes in respiratory drive. Although there was no significant fall in VO2 associated with a decrease in arousal state, breathing frequency (f(R)) did decrease (from 18.80 +/- 1.50 breaths min(-1) in WAKE to 10.40 +/- 0.49 breaths min(-1) in SWS), while the incidence of long apneas (>20 s) increased (12.76 +/- 4.06 apneas h(-1) in WAKE and 31.95 +/- 2.37 apneas h(-1) in SWS). Breathing was rarely seen during rapid eye movement (REM) sleep. Tachypnea was present at all levels of increased respiratory drive; however, hypoxia induced a dramatic bradycardia regardless of arousal state, while hypercarbia produced a tachycardia in SWS only. The hypoxic and hypercarbic chemosensitivities of harbour seal pups were similar to those of terrestrial mammals; however, unlike terrestrial mammals, where hypoxic and hypercarbic sensitivities are often reduced during SWS, the sensitivity of harbour seal pups to hypoxia and hypercarbia remained unchanged during the decrease in arousal state from WAKE to SWS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.