Abstract

Respiratory chain supercomplexes have been isolated from mammalian and yeast mitochondria, and bacterial membranes. Functional roles of respiratory chain supercomplexes are catalytic enhancement, substrate channelling, and stabilization of complex I by complex III in mammalian cells. Bacterial supercomplexes are characterized by their relatively high detergent-stability compared to yeast or mammalian supercomplexes that are stable to sonication. The mobility of substrate cytochrome c increases in the order bacterial, yeast, and mammalian respiratory chain. In bacterial supercomplexes, the electron transfer between complexes III and IV involves movement of the mobile head of a tightly bound cytochrome c, whereas the yeast S. cerevisiae seems to use substrate channelling of a mobile cytochrome c, and mammalian respiratory chains have been described to use a cytochrome c pool. Dimeric ATP synthase seems to be specific for mitochondrial OXPHOS systems. Monomeric complex V was found in Acetobacterium woodii and Paracoccus denitrificans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.