Abstract

BackgroundMitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. The assembly of the eleven-subunit CIII is completed by the insertion of the Rieske iron-sulfur protein, a process for which BCS1L protein is indispensable. Mutations in the BCS1L gene constitute the most common diagnosed cause of CIII deficiency, and the phenotypic spectrum arising from mutations in this gene is wide.ResultsA case of CIII deficiency was investigated in depth to assess respiratory chain function and assembly, and brain, skeletal muscle and liver histology. Exome sequencing was performed to search for the causative mutation(s). The patient’s platelets and muscle mitochondria showed respiration defects and defective assembly of CIII was detected in fibroblast mitochondria. The patient was compound heterozygous for two novel mutations in BCS1L, c.306A > T and c.399delA. In the cerebral cortex a specific pattern of astrogliosis and widespread loss of microglia was observed. Further analysis showed loss of Kupffer cells in the liver. These changes were not found in infants suffering from GRACILE syndrome, the most severe BCS1L-related disorder causing early postnatal mortality, but were partially corroborated in a knock-in mouse model of BCS1L deficiency.ConclusionsWe describe two novel compound heterozygous mutations in BCS1L causing CIII deficiency. The pathogenicity of one of the mutations was unexpected and points to the importance of combining next generation sequencing with a biochemical approach when investigating these patients. We further show novel manifestations in brain, skeletal muscle and liver, including abnormality in specialized resident macrophages (microglia and Kupffer cells). These novel phenotypes forward our understanding of CIII deficiencies caused by BCS1L mutations.

Highlights

  • Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon

  • CIII disorders have long been considered uncommon since traditional investigations for mitochondrial disease, including muscle biopsy (looking for ragged red fibers or cytochrome C oxidase (COX) negative fibers) and routine spectrophotometric methods for oxidative phosphorylation (OXPHOS) activity, do not necessarily reveal these deficiencies [4]

  • It is a homodimer in which each monomer contains eleven subunits; two core proteins, three electron-transferring proteins with prosthetic groups (cytochrome b, cytochrome c1 and Rieske iron-sulfur protein (RISP) encoded by MT-CYB, CYC1 and UQCRFS1, respectively) and six low molecular weight accessory proteins [5]

Read more

Summary

Introduction

Mitochondrial diseases due to defective respiratory chain complex III (CIII) are relatively uncommon. CIII catalyzes the transfer of electrons from reduced Coenzyme Q10 to cytochrome c, with the subsequent transfer of protons across the inner membrane of the mitochondria It is a homodimer in which each monomer contains eleven subunits; two core proteins (encoded by UQCRC1 and UQCRC2, respectively), three electron-transferring proteins with prosthetic groups (cytochrome b, cytochrome c1 and Rieske iron-sulfur protein (RISP) encoded by MT-CYB, CYC1 and UQCRFS1, respectively) and six low molecular weight accessory proteins (encoded by UQCRH, UQCRB, UQCRQ, UQCR10, UQCR11, respectively, plus the N-terminal part of the RISP encoded by UQCRFS1) [5]. The assembly of this eleven-subunit complex requires the presence of chaperones/facilitating proteins not present in the functional mature protein, including the proteins encoded by LYRM7 [6], TTC19 and BCS1L [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call