Abstract

BackgroundBeyond the well-known deleterious effects of ethanol defining Fetal Alcohol Spectrum Disorders (FASD), the notion of fetal alcohol programming has gained scientific support. This phenomenon implies early neural plasticity relative to learning mechanisms comprising ethanol´s sensory cues and physiological effects of the drug; among others, its reinforcing properties and its depressant effects upon respiration. In this study, as a function of differential ethanol exposure during gestation, we analyzed neonatal physiological and behavioral responsiveness recruited by the odor of the drug. MethodsA factorial design defined by maternal ethanol intake during pregnancy (Low, n = 38; Moderate, n = 18 or High, n = 19) and olfactory stimulation (ethanol odor and/or or a novel scent) served as the basis of the study. Neonatal respiratory and cardiac frequencies, oxygen saturation levels and appetitive or aversive facial expressions, served as dependent variables. ResultsNewborns of High drinkers exhibited significant physiological and behavioral signs indicative of alcohol odor recognition; specifically, respiratory depressions and exacerbated appetitive facial reactions coupled with diminished aversive expressions. Respiratory depressions were not accompanied by heart rate accelerations (cardiorespiratory dysautonomia). According to ROC curve analyses respiratory and behavioral reactivity were predictive of high maternal intake patterns. ConclusionsThese results validate the notion of human fetal alcohol programming that is detected immediately after birth. The reported early functional signs indicative of relatively high alcohol gestational exposure should broaden our capability of diagnosing FASD and lead to appropriate primary or secondary clinical interventions (Registry of Health Research N.3201- RePIS, Córdoba, Argentina).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call