Abstract

Epidemiological studies demonstrate a positive association between daily changes in concentrations of ambient airborne particulate matter (PM) and adverse respiratory and cardiovascular health effects. However, physicochemical properties of PM can vary greatly across geographical, atmospheric, and temporal conditions and influence the relative toxicity of airborne PM. The purpose of this study was to investigate the adverse pulmonary and cardiovascular health effects of ambient PM collected from discrete sampling sites in Kuwait during dust storm (DS) and non-dust storm (NDS) conditions. Collected dust samples were characterized for their chemical composition using atomic absorption, GC–MS, and HPLC–MS analyses. Male BALB/cJ mice were exposed to 100 µg of either NDS or dust storm (DS) PM in 50 µl of PBS by oropharyngeal aspiration. Lung function was measured and bronchoalveolar lavage was conducted at 1, 7, and 14 days post-exposure. Ischemia–reperfusion injury was performed 24 h after exposures by obstructing the left main coronary artery approximately 4 mm distal to its origin for 20 min, followed by 2 h. of reperfusion. Exposure to either NDS or DS PM resulted in airway hyperresponsiveness to acetylcholine compared to PBS controls. Total protein and cells in BAL fluid were elevated in both dust groups one day after exposure; however, DS PM induced a greater increase in cell numbers than did NDS PM, particularly in neutrophils, eosinophils, and lymphocytes. Representative lung sections exhibited positive staining for mucus in large airways at 7 days which resolved by 14 days in dust storm-exposed mice but persisted in NDS-exposed animals. Our findings suggest that NDS PM may be more effective in producing an adaptive immune response, while the early inflammation induced by DS PM may better resolve. We also observed a prolonged airway mucus response after exposure to NDS PM, suggesting it may produce more asthma-like features than dust storm PM. PM-induced changes to cardiac ischemia–reperfusion injury were not observed in this study. The lack of cardiovascular response may have been due to the limited exposure and single time point used in this study.

Highlights

  • Over 150 epidemiological studies demonstrate a positive association between daily changes in concentrations of ambient airborne particulate matter (PM) and adverse respiratory and cardiovascular health effects

  • Exposure to 100 μg of either non-dust storm (NDS) or dust storm (DS) PM resulted in hyperresponsiveness to the higher concentrations of acetylcholine compared to PBS controls at day 1 (Fig. 1)

  • Protein concentrations were significantly elevated in mice exposed to both NDS and DS PM compared to PBS controls one day after exposure, but were not different from PBS controls thereafter (Fig. 2)

Read more

Summary

Introduction

Over 150 epidemiological studies demonstrate a positive association between daily changes in concentrations of ambient airborne particulate matter (PM) and adverse respiratory and cardiovascular health effects. Physicochemical properties of PM can vary greatly across geographical, atmospheric, and temporal conditions and influence the relative toxicity of PM. Thalib and Al-Taiar reported significant association of dust storm events and increases in hospital admissions for asthma and other respiratory conditions in Kuwait (Thalib and Al-Taiar 2012). We had the opportunity to investigate the acute toxic effects of ambient PM collected from discrete sampling sites in Kuwait during dust storm and NDS conditions on the cardiopulmonary. The purpose of this study was to investigate adverse health effects of Kuwaiti ambient PM collected during dust storms vs NDS periods and their potential contribution to increased risk of respiratory and cardiac illness

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call