Abstract

The mayfly larvae Epeorus sylvicola and Ecdyonurus torrentis inhabit either fast-flowing or, for the latter species, calm zones of running water. We studied (1) mechanisms and limitations of oxygen transport in single individuals (oxygen consumption rate, occurrence and rate of gill movements, and heartbeats) in running water of different oxygen concentrations and (2) capacities for anaerobiosis (L-lactate production). Our aim was to look for specific adaptations in the two species to slightly different microhabitats. Epeorus sylvicola, whose immovable gills are not able to generate ventilatory convection, proved to be an oxyconformer at both test temperatures (11 degrees and 15 degrees C). Ecdyonurus torrentis showed a progressively stronger oxyregulatory behavior at higher temperatures. In this species an onset of gill beating was found at moderate hypoxia (below 16 kPa). Ventilating individuals reached maximum rates (300 min-1) of 5-14 kPa. In the case of a further reduction of oxygen partial pressure, the ventilatory rate started to decrease. Ventilatory activity, however, was maintained down to very low oxygen concentrations. Neither in E. sylvicola nor in E. torrentis was experimental evidence found to confirm the hypothesis of a respiratory function of hindgut movements. During hypoxia, the heart rate was constant in both species (E. sylvicola: 80 min-1; E. torrentis: 60 min-1): bradycardia occurred either below 1.5 kPa or below 4 kPa. Anaerobiosis, that is, lactate production, was not detected in either species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.