Abstract

Intracellular ion concentration and respiratory activity in the marine cyanobacterium Spirulina subsalsa was analyzed during cell transition from saline to hypersaline medium. During salt upshock, an early phase of Na+ and Cl- influx was observed, followed by an adaptation phase where both Na+ and Cl- were excluded from the cell. Respiration in intact cells was enhanced during salt upshock. S. subsalsa spheroplasts exhibited a high rate of O2 uptake, which was further enhanced in cells grown in hypersaline medium, upon addition of NaCl to the assay mixture. This effect was found to be specific to sodium ions. Plasma membrane fractions from cells grown in hypersaline medium exhibited a high rate of cytochrome oxidase activity, which was further stimulated by NaCl, and was sensitive to DCCD. Immunoblot analysis of Spirulina plasma membrane polypeptides with anti-cytochrome oxidase serum demonstrated high content of 53.4 kDa polypeptide of cytochrome oxidase, which was enriched in membranes obtained from hypersaline Spirulina cells. The enhanced respiration, and more specifically the enrichment of cytochrome oxidase activity in salt-adapted cells in situ, as well as its stimulation by NaCl in vitro and inhibition by DCCD, suggest that cytochrome oxidase is involved in the extrusion of sodium ions from cells of the salt-tolerant Spirulina subsalsa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.