Abstract

Acclimation of 25 degrees C-grown Arabidopsis thaliana at 5 degrees C resulted in a marked increase of leaf respiration in darkness (Rd) measured at 5 degrees C. Rd was particularly high in leaves developed at 5 degrees C. Leaf respiration (non-photorespiratory intracellular decarboxylation) in the light (Rl) also increased during cold acclimation, but less so than did Rd. The ratio Rd/Pt (Pt - true photosynthesis) was higher in more acclimated or cold-developed leaves, while the ratio Rl/Pt remained unchanged. In cold-acclimated leaves, Rl did not correlate with 3-phosphoglycerate and pyruvate nor with hexose phosphate pools in the cytosol. Rl in A. thaliana leaves was probably not limited by the substrate during cold acclimation. Under the conditions tested, Rd was more sensitive to low temperature stress than Rl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.