Abstract

The role of hexokinase in carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea), maize (Zea mays) mesophyll, and Chlamydomonas reinhardtii chloroplasts externally supplied with 14C-labeled fructose, glucose, mannose, galactose, maltose, and ribose. Glucose and ribose were the preferred substrates with the Chlamydomonas and maize chloroplasts, respectively. The rate of CO2 release from fructose was about twice that from glucose in the spinach chloroplast. Externally supplied ATP stimulated the rate of CO2 release. The pH optimum for CO2 release was 7.5 with ribose and fructose and 8.5 with glucose as substrates. Probing the outer membrane polypeptides of the intact spinach chloroplast with two proteases, trypsin and thermolysin, decreased 14CO2 release from glucose about 50% but had little effect when fructose was the substrate. Tryptic digestion decreased CO2 release from glucose in the Chlamydomonas chloroplast about 70%. 14CO2 evolution from [1-14C]-glucose-6-phosphate in both chloroplasts was unaffected by treatment with trypsin. Enzymic analysis of the supernatant (stroma) of the lysed spinach chloroplast indicated a hexokinase active primarily with fructose but with some affinity for glucose. The pellet (membranal fraction) contained a hexokinase utilizing both glucose and fructose but with considerably less total activity than the stromal enzyme. Treatment with trypsin and thermolysin eliminated more than 50% of the glucokinase activity but had little effect on fructokinase activity in the spinach chloroplast. Tryptic digestion of the Chlamydomonas chloroplast resulted in a loss of about 90% of glucokinase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.